Advances in Our Understanding of Space Weather in Habitable Zone Systems

Stellar magnetism is probed with different techniques

▶ Zeeman broadening (ZB): probes unsigned average surface magnetic field (integrated light)

 Zeeman-Doppler imaging (ZDI): probes magnetic field topology & intensity (spectropolarimetric monitoring)

Fares et al 2009

Small- and large-scale fields: (seem to have) similar trends with rotation

Zeeman-Doppler imaging (large scale)

solar like young suns ★ H-J hosts early-dM Sun o mid dM o late dM $<|B_v|> \propto Ro^{-1.38\pm0.14}$ -2.0-1.5-1.0-0.50.0 log(Ro) Vidotto et al 2014b

log(average magnetic field [G])

Zeeman broadening (small+large scale)

Reiners et al 2022

ZDI reproduces ~ 5 - 15% of the field observed by ZB

 Flux cancelation of unresolved regions (small scale) of opposite polarity field causes this discrepancy

ZDI reproduces ~ 5 - 15% of the field observed by ZB

Two Complementary techniques

	Zeeman Broadening	Zeeman Doppler Imaging
Total field measured?	Yes: large and small scales	No: limited to large-scale fields
Topology studied? (ie, vector B)	No: average over entire surface only	Yes: surface distribution of B_r , B_{ϕ} , B_{θ}

 Flux cancelation of unresolved regions (small scale) of opposite polarity field causes this discrepancy

ZDI reproduces ~ 5 - 15% of the field observed by ZB

Two Complementary techniques

	Zeeman Broadening	Zeeman Doppler Imaging
Total field measured?	Yes: large and small scales	No: limited to large-scale fields
Topology studied? (ie, vector B)	No: average over entire surface only	Yes: surface distribution of B_r , B_{ϕ} , B_{θ}

 Flux cancelation of unresolved regions (small scale) of opposite polarity field causes this discrepancy Which "scale" is more relevant for the exoplanet community?

The diversity of star-planet interactions

Magnetic interaction

Tidal interaction

Stellar outflow (particle) interaction

Radiative interaction

Stellar outflow (particle) interaction

60

-60

Stellar outflow (particle) interaction

Radiative interaction

longitude (°)

2.0

-2.0

60

-60

latitude (°)

Stellar outflow (particle) interaction

2.0

-2.0

Magnetic interaction

Large-scale
stellar magnetic
field connects
stars and planets

Strugarek et al 2015

Radiative interaction

longitude (°)

see Vidotto (2025, ARAA)

Magnetic interaction

Large-scale
stellar magnetic
field connects
stars and planets

Strugarek et al 2015

60 90 0 -60 -90 -60 120 180 2.0 -0.7 -2.0 -3.4 -3.4

Radiative

interaction

Stellar outflow (particle) interaction

Stellar winds flow through large-scale fields; position of Alfven surface

Vidotto et al 2023

see Vidotto (2025, ARAA)

Magnetic interaction

Large-scale
stellar magnetic
field connects
stars and planets

Strugarek et al 2015

see Vidotto (2025, ARAA)

Radiative interaction

Small-scale magnetic field generates hot coronae, high-energy radiation (If you are interested in planet detection, you probably don't like very much the small-scale fields)

Stellar outflow (particle) interaction

Stellar winds flow through large-scale fields; position of Alfven surface

Vidotto et al 2023

Stellar wind-activity trends & evolution

(data from: Wood, Jardine, Fichtinger, Vidotto, Drake, Lim, Gaidos, Wargelin, OFionnagain)

Stellar wind-activity trends & evolution

(data from: Wood, Jardine, Fichtinger, Vidotto, Drake, Lim, Gaidos, Wargelin, OFionnagain)

Small-scale stellar magnetic field

What's a stellar wind? Think of it as an expanding outer atmosphere...

What's a stellar wind? Think of it as an expanding outer atmosphere...

• The solar/stellar wind fills in the interplanetary medium, interacting with any orbiting objects.

What's a stellar wind? Think of it as an expanding outer atmosphere...

• The solar/stellar wind fills in the interplanetary medium, interacting with any orbiting objects.

Comet Encke interacting with solar outflows (Vourlidas+07)

- Mathematical description: equations of (magneto)fluid dynamics
- The challenge is to determine which forces drive a stellar wind
 - multiple options exist

- Mathematical description: equations of (magneto)fluid dynamics
- The challenge is to determine which forces drive a stellar wind
 - multiple options exist

Key features:

- Mathematical description: equations of (magneto)fluid dynamics
- The challenge is to determine which forces drive a stellar wind
 - multiple options exist

- Key features:
 - Acceleration happens quickly

- Mathematical description: equations of (magneto)fluid dynamics
- The challenge is to determine which forces drive a stellar wind
 - multiple options exist

Key features:

- Acceleration happens quickly
- At large distances, the wind approaches the asymptotic wind speed: terminal speed (u∞)

- Mathematical description: equations of (magneto)fluid dynamics
- The challenge is to determine which forces drive a stellar wind
 - multiple options exist

Key features:

- Acceleration happens quickly
- At large distances, the wind approaches the asymptotic wind speed: terminal speed (u∞)
- Wind crosses (multiple) critical points

Sub- & Super-Alfvenic star-planet interactions

Prox Cen

Kavanagh, Vidotto et al 2021

Mass-loss rate: 4x10-15 Msun/yr

AU Mic

Mass-loss rate: 5x10-13 Msun/yr

Sub- & Super-Alfvenic star-planet interactions

0

Planet beyond Alfven surface: star does not notice (or hear...) the planet!

Key point

Compare planet
orbit with Alfven
surface

Kavanagh, Vidotto et al 2021

AU Mic

Mass-loss rate: 5x10-13 Msun/yr

Sub- & Super-Alfvenic star-planet interactions

Planet beyond Alfven surface: star does not notice (or hear...) the planet!

Kavanagh, Vidotto et al 2021

AU Mic

Mass-loss rate: 5x10-13 Msun/yr

Planets within Alfven surface: magnetic connectivity between the planet and star can take place (e.g., information can travel towards host star)

Key point

Compare planet

orbit with Alfven

surface

Sub- & Super-Alfvenic SPIs in the context of exoplanet population

Atkinson et al 2024

Sub- & Super-Alfvenic SPIs in the context of exoplanet population

Atkinson et al 2024

Super-Alfvenic orbits

Sub- & Super-Alfvenic SPIs in the context of exoplanet population

Atkinson et al 2024

Super-Alfvenic orbits

Sub-Alfvenic orbits
(potentially catastrophic for atmospheric loss; paradise for magnetic SPI)

Sub- & Super-Alfvenic SPIs in the context of exoplanet population

Atkinson et al 2024

Super-Alfvenic orbits

Sub-Alfvenic orbits
(potentially catastrophic for atmospheric loss; paradise for magnetic SPI)

planets inside habitable zone & outside Alfven surface, of which
 ~10 terrestrial planets. (PLATO will increase this number.)

The evolution of Earth's magnetosphere during the solar main sequence

3D models of the interaction between the solar wind and Earth's magnetosphere

Long-term evolution of the solar wind: Vidotto 2021, LRSP

Increasing the strength of the solar wind as we look back in time

Smaller magnetospheres could provide direct access of atmospheres to stellar wind stripping.

Carolan, Vidotto et al 2019 (future: Veras & Vidotto)

Evolution of magnetosphere of an Earth-twin at the Habitable Zone

 As the system evolves, stellar activity decreases
 & planetary magnetospheres become bigger

 Note: M dwarf stars remain active for a long time...

Evolution of magnetosphere of an Earth-twin at the Habitable Zone

Coronal mass ejections: further reduce planetary magnetospheres

Coronal mass ejections: further reduce planetary magnetospheres

Do smaller magnetospheres expose atmospheres for solar wind erosion?

atmospheric escape/retention and planetary habitability?

Different planets, (too many?) different atmospheric loss processes

Gronoff et al 2020

Open question #2: Planetary magnetic fields: protection or increased atmospheric loss?

"induced" magnetospheres

Egan et al 2019

Magnetized

"induced" magnetospheres

Intrinsic magnetospheres

Egan et al 2019

Magnetized

"induced" magnetospheres

Intrinsic magnetospheres

Aline Vidotto

24

Magnetic field effects on atmospheric escape of hot Jupiters

Stellar wind is super-Alfvenic

weak increase in escape rate with increase in B_{pl}...

Magnetic field effects on atmospheric escape of hot Jupiters

weak increase in escape rate with increase in B_{pl}...

with increase in B_{pl}...

Open question #3: How do we move forward if we want to understand exospace weather around PLATO stars?

Stellar wind models require surface magnetic fields

On-going spectropolarimetric campaigns of PLATO stars to reveal stellar magnetism:

- P. Petit: solar-like stars (Espadons)
- J. Alvarado: solar-like stars (HARPSPol)
- M. Diez: M dwarfs (Spirou)

Stellar wind models require surface magnetic fields

Self-consistent MHD wind solution

Stellar magnetic field from observations

On-going spectropolarimetric campaigns of PLATO stars to reveal stellar magnetism:

- P. Petit: solar-like stars (Espadons)
- J. Alvarado: solar-like stars (HARPSPol)
- M. Diez: M dwarfs (Spirou)

Vidotto et al 2023

Conclusions

Stellar magnetic activity is at the of star-planet interactions mediated by: high-energy radiation, stellar winds, and magnetic connectivity

Long-term evolution of magnetospheres due to stellar wind evolution: older planets → larger magnetospheres

Long-period planets likely experience super-Alfvenic interactions. Affects sizes of planetary magnetospheres.

Open question:

How is magnetospheric sizes related to atmospheric retention and habitability?