PLATO - ESP 2025 Planets throughout the Habitable Zone # Atmospheric Evolution and Potential Habitability of Sub-Neptunes: A Comparative Study in the PLATO Era **Ylenia Mascolo**¹, Tiziano Zingales¹, Giacomo Mantovan¹, Giampaolo Piotto¹, Antonio Maggio², Daniele Locci², Riccardo Spinelli², Danai Polychroni³, Diego Turrini³, Paolo Simonetti⁴ ¹Università degli Studi di Padova, ²INAF - Osservatorio Astronomico di Palermo, ³INAF - Osservatorio Astrofisico di Torino, ⁴INAF-Osservatorio Astronomico di Trieste # Why to Study Small Exoplanets - 1. Formation - 2. Atmospheric Evolution - 3. Habitability # The Atmosphere of Small Exoplanets To distinguish between atmospheric type: - The atmospheric evolution over time - The chemical composition # Population Study of Sub-Neptunes #### Project Goal: Build a population study by analyzing four sub-Neptunes in pairs, then jointly, to identify common characteristics and evolutionary patterns. | | Planet | K2-18 b | GJ 1214 b | TOI-836c | GJ 9827 d | |---|---------------|-------------------|-----------------|-----------------|-----------------| | | $M_p(M_e)$ | 8.63 ± 1.35 | 8.41 ± 0.36 | 9.60 ± 2.70 | 3.02 ± 0.58 | | | $R_p(R_e)$ | 2.61 ± 0.09 | 2.73 ± 0.03 | 2.59 ± 0.09 | 1.98 ± 0.11 | | | $T_{p}(K)$ | 255 ± 4 | 567 ± 7 | 665 ± 27 | 675 ± 14 | | | Type Star | M2.8 V | M4 V | KV | K7 V | | | $M_s(M\odot)$ | 0.47 ± 0.04 | 0.18 ± 0.01 | 0.68 ± 0.04 | 0.62 ± 0.04 | | | $R_s(R\odot)$ | 0.461 ± 0.004 | 0.21 ± 0.01 | 0.66 ± 0.01 | 0.58 ± 0.03 | | _ | Age (Gyr) | 2.4 ± 0.6 | <3 | 5 ± 6 | 5 ± 4 | | | | | | | | NASA Exoplanets Archive #### Focus on Planet K2-18b Discovered in 2015, K2 mission K2-18b orbits an **M-dwarf star** with only 2.53% of the Sun's luminosity, yet it receives a stellar flux of **1368 W/m²**, very close to Earth's ~1361 W/m² K2-18b Earth | $\mathrm{M_{p}\left(\mathrm{M_{e}}\right)}$ | 8.63 ± 1.35 | | |---|-----------------------|--| | $R_p(R_e)$ | 2.61 ± 0.09 | | | T _p (K) | 255 ± 4 | | | P (days) | 32.9396 ± 10^{-4} | | | Type Star | M2.8 V | | | $M_s(M\odot)$ | 0.47 ± 0.04 | | | $R_s(R\odot)$ | 0.461 ± 0.004 | | | Age (Gyr) | 2.4 ± 0.6 | | ### **Atmospheric Evolution of K2-18b** We modeled the structure and evolution of K2-18b's atmosphere over time, accounting for: Gravitational contraction Stellar XUV-driven photoevaporation Current age - 2.4 Gyr Earth-like core: 67% rock, 33% ice ~8.4 M⊕, ~1.7 R⊕ Envelope: 2.25% mass ~0.19 M⊕, ~0.8 R⊕ **Envelope** Early age - 10 Myr Envelope: ~2× larger but only 10% more massive Gravitational contraction, not loss from photoevaporation Photoevaporation had little effect on atmospheric mass → Composition is likely **primordial** #### What Molecules in K2-18b? # Atmospheric Analysis of K2-18b Retrieval framework: TauREx3 (Al-Refaie+2021,2022) Chemical model: Free Profile Active molecules: H₂O, CH₄, NH₃, CO₂, CO, HCN Active biomolecules: DMS, DMDS Inert molecules: H₂, He, N₂ **T-P profile:** Isothermal vs. 4-point profile # Posterior distributions of K2-18b 4 models: change T-P profile and add \boldsymbol{N}_2 Fitted parameters with uniform priors: - Planetary radius - T-P parameters - Active molecules - Ratio of inactive molecules #### Temperature-Pressure Profile #### Compatible to isothermal within 1σ ### **Statistical Comparison** Atmospheric Detectability Index (ADI), a positively defined Bayes factor calibrated on the Jeffreys' scale $$ADI = \begin{cases} \log(BF_1) - \log(BF_2), & \text{if } \log(BF_1) > \log(BF_2) \\ 0, & \text{otherwise} \end{cases}$$ - ADI > 3 \rightarrow Significant atmospheric detection at 3σ - ADI $< 3 \rightarrow$ Unable to favour a model ``` no N2 iso - with N2 iso: 1.27 no N2 4p - no N2 iso: 0.24 no N2 iso - with N2 4p: 1.59 no N2 4p - with N2 iso: 1.51 with N2 iso - with N2 4p: 0.31 no N2 4p - with N2 4p: 1.83 ``` Occam's Razor → no N2 iso #### Conclusions and Future Directions #### Planet K2-18b Atmospheric evolutionary model + Primary atmosphere Retrieval models Hybrid atmosphere Combine retrieval analysis with models of atmospheric evolution #### Population study Extend methodology to GJ 1214b, TOI-836c, and GJ 9827d Template for analyzing upcoming PLATO discoveries Thank you for your attention! Ylenia Mascolo University of Padova, Italy ylenia.mascolo@unipd.it "Therefore, innumerable are the worlds and infinite the earths that orbit around those suns as we see the seven orbiting our Sun" Giordano Bruno (1548-1600)