PLATO - ESP 2025 Planets throughout the Habitable Zone

Atmospheric Evolution and

Potential Habitability of Sub-Neptunes:

A Comparative Study in the PLATO Era

Ylenia Mascolo¹, Tiziano Zingales¹, Giacomo Mantovan¹, Giampaolo Piotto¹, Antonio Maggio², Daniele Locci², Riccardo Spinelli², Danai Polychroni³, Diego Turrini³, Paolo Simonetti⁴

¹Università degli Studi di Padova, ²INAF - Osservatorio Astronomico di Palermo, ³INAF - Osservatorio Astrofisico di Torino, ⁴INAF-Osservatorio Astronomico di Trieste

Why to Study Small Exoplanets

- 1. Formation
- 2. Atmospheric Evolution
- 3. Habitability

The Atmosphere of Small Exoplanets

To distinguish between atmospheric type:

- The atmospheric evolution over time
- The chemical composition

Population Study of Sub-Neptunes

Project Goal:

Build a population study by analyzing four sub-Neptunes in pairs, then jointly, to identify common characteristics and evolutionary patterns.

	Planet	K2-18 b	GJ 1214 b	TOI-836c	GJ 9827 d
	$M_p(M_e)$	8.63 ± 1.35	8.41 ± 0.36	9.60 ± 2.70	3.02 ± 0.58
	$R_p(R_e)$	2.61 ± 0.09	2.73 ± 0.03	2.59 ± 0.09	1.98 ± 0.11
	$T_{p}(K)$	255 ± 4	567 ± 7	665 ± 27	675 ± 14
	Type Star	M2.8 V	M4 V	KV	K7 V
	$M_s(M\odot)$	0.47 ± 0.04	0.18 ± 0.01	0.68 ± 0.04	0.62 ± 0.04
	$R_s(R\odot)$	0.461 ± 0.004	0.21 ± 0.01	0.66 ± 0.01	0.58 ± 0.03
_	Age (Gyr)	2.4 ± 0.6	<3	5 ± 6	5 ± 4

NASA Exoplanets Archive

Focus on Planet K2-18b

Discovered in 2015, K2 mission

K2-18b orbits an **M-dwarf star** with only 2.53% of the Sun's luminosity, yet it receives a stellar flux of **1368 W/m²**, very close to Earth's ~1361 W/m²

K2-18b

Earth

$\mathrm{M_{p}\left(\mathrm{M_{e}}\right)}$	8.63 ± 1.35	
$R_p(R_e)$	2.61 ± 0.09	
T _p (K)	255 ± 4	
P (days)	32.9396 ± 10^{-4}	
Type Star	M2.8 V	
$M_s(M\odot)$	0.47 ± 0.04	
$R_s(R\odot)$	0.461 ± 0.004	
Age (Gyr)	2.4 ± 0.6	

Atmospheric Evolution of K2-18b

We modeled the structure and evolution of K2-18b's atmosphere over time, accounting for:

Gravitational contraction

Stellar XUV-driven photoevaporation

Current age - 2.4 Gyr

Earth-like core: 67% rock, 33% ice ~8.4 M⊕, ~1.7 R⊕

Envelope: 2.25% mass ~0.19 M⊕, ~0.8 R⊕

Envelope

Early age - 10 Myr

Envelope: ~2× larger but only 10% more massive

Gravitational contraction, not loss from photoevaporation

Photoevaporation had little effect on atmospheric mass → Composition is likely **primordial**

What Molecules in K2-18b?

Atmospheric Analysis of K2-18b

Retrieval framework: TauREx3 (Al-Refaie+2021,2022)

Chemical model: Free Profile

Active molecules: H₂O, CH₄, NH₃, CO₂, CO, HCN

Active biomolecules: DMS, DMDS

Inert molecules: H₂, He, N₂

T-P profile: Isothermal vs. 4-point profile

Posterior distributions of K2-18b

4 models: change T-P profile and add \boldsymbol{N}_2

Fitted parameters with uniform priors:

- Planetary radius
- T-P parameters
- Active molecules
- Ratio of inactive molecules

Temperature-Pressure Profile

Compatible to isothermal within 1σ

Statistical Comparison

Atmospheric Detectability Index (ADI),

a positively defined Bayes factor calibrated on the Jeffreys' scale

$$ADI = \begin{cases} \log(BF_1) - \log(BF_2), & \text{if } \log(BF_1) > \log(BF_2) \\ 0, & \text{otherwise} \end{cases}$$

- ADI > 3 \rightarrow Significant atmospheric detection at 3σ
- ADI $< 3 \rightarrow$ Unable to favour a model

```
no N2 iso - with N2 iso: 1.27
no N2 4p - no N2 iso: 0.24
no N2 iso - with N2 4p: 1.59
no N2 4p - with N2 iso: 1.51
with N2 iso - with N2 4p: 0.31
no N2 4p - with N2 4p: 1.83
```

Occam's Razor → no N2 iso

Conclusions and Future Directions

Planet K2-18b

Atmospheric evolutionary model +

Primary atmosphere

Retrieval models

Hybrid atmosphere

Combine retrieval analysis with models of atmospheric evolution

Population study

Extend methodology to GJ 1214b,

TOI-836c, and

GJ 9827d

Template for analyzing upcoming PLATO discoveries

Thank you for your attention!

Ylenia Mascolo University of Padova, Italy

ylenia.mascolo@unipd.it

"Therefore, innumerable are
the worlds and infinite the
earths that orbit around
those suns as we see
the seven orbiting
our Sun"

Giordano Bruno (1548-1600)