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Fiscale et al., Electronics 2025, 14(9), 1738



Limitation of current vetting algorithms
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Figure credit: Shallue & Vanderburg, AJ, 155:94, 2018

Processing features relevant for humans in classification



Limitation of current vetting algorithms
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Figure credit: Tey E. et al., AJ, 165:95, 2023

Processing features relevant for humans in classification



Limitation of current vetting algorithms
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Processing features relevant for humans in classification
Figure credit
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Drawbacks of these approaches

Model complexity
- 100,000,000  

model parameters 
to be optimized 

- overfitting issues

Application to new surveys
Development of new  

architectures from scratch
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“…solving principle that recommends searching for explanations constructed with the smallest 
possible set of elements”

Occam’s razor heuristic
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Occam’s razor heuristic



Data preparation
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Data Preparation
From raw light curves to input representation
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Machine Learning 
workflow
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Machine Learning workflow
Feature Extraction, Dimensionality Reduction and Classification
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Astrophysical false positive
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Astrophysical false positive
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Application on Kepler and TESS, comparison with other models, the contribution of VGG and t-SNE

Results
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Results
Application on Kepler and TESS data

Table 1. Classification performance of the model across three datasets: Kepler 
Q1–Q17 Data Release (DR) 24, Kepler Q1-Q17 Data Release 25, and TESS 
TEY23 (Evan Tey et al 2023 AJ 165 95). The metrics have been computed on test 
samples.
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Results
Comparison with state-of-the art vetting models

Table 2. Performance of different vetting models. Our precision, recall, and F1-
scores for Kepler data are computed by averaging the scores of Table 1 obtained 
on each class. Other model scores are taken from the reference manuscripts. The 
best results on Kepler and TESS datasets are highlighted in boldface.
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Results
The power of VGG-19 in extracting relevant patterns from data

Features extracted by DART-Vetter 
(top row) and VGG19 (bottom row) 
in the two dimensional embedding  
defined by t-SNE. 

(Left)      Kepler Q1-Q17 DR24 
(Middle) Kepler Q1-Q17 DR25 
(Right)    TESS TEY23
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Results
The power of t-SNE in enhancing class separability

Comparison between PCA (top 
row) and t-SNE (bottom row) in 
dimensionality reduction.

(Left)      Kepler Q1-Q17 DR24 
(Middle) Kepler Q1-Q17 DR25 
(Right)    TESS TEY23
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Future Directions
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Future Directions

A. Application to simulated PLATO data (ongoing work at Laboratoire d’Astrophysique de Marseille); 
B. Development of an end-to-end pipeline for processing data from Kepler, TESS and PLATO missions.
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Application on multiple domains
Kepler DR25 & TESS TEY23

Fiscale et al., in preparation



PLATO Machine Learning WG
Aim: Development of Machine Learning tools to support PLATO 
Working Packages focused on data analysis.

WG Leader: Tiziano Zingales

tiziano.zingales@unipd.it
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