

Structure and evolution of the envelopes of hot water worlds

Dr. Artem (Artyom) Aguichine
Postdoc at University of California, Santa Cruz

<u>Collaborators</u>: Olivier Mousis, Natalie Batalha, Jonathan J. Fortney, James E. Owen, Nadine Nettelmann, Eliza M.-R. Kempton, Natasha Batalha, Johanna Teske, Francis Nimmo, Lily Larkins*, Emerson Tao*

The era of exoplanet demographics

Transit: planet radius

Radial Velocity: planet mass

The era of exoplanet demographics

Fulton+2017

The runaway greenhouse effect

3% of sub-Neptunes:
Water is liquid or solid
Water Worlds

Water is steam and supercritical Steam Worlds

97% of sub-Neptunes:

Trinh+2023

Used in Acuña+2021,2024,2025

Reinterpretation of sub-Neptune's interiors

Steam H₂O: Aguichine+2021

Liquid H₂O: Zeng+2016

Reinterpretation of sub-Neptune's interiors

Steam H₂O: Aguichine+2021

Liquid H₂O: Zeng+2016

Sub-Neptunes could be steam worlds.

Reinterpretation of sub-Neptune's interiors

Steam H₂O: Aguichine+2021

Liquid H₂O: Zeng+2016

Sub-Neptunes could be steam worlds or gas dwarf??

Same mass, same radius, different composition

Steam World Evolution (SWE) Aguichine+2025

Steam World Evolution (SWE) Aguichine+2025

Steam World Evolution (SWE) Aguichine+2025

Steam H₂O: Aguichine+2025

Liquid H₂O: Zeng+2016

Break the degeneracy with age

Better radius and age measurements with **PLATO**:

are sub-Neptunes H₂-He or H₂O?

Aguichine & Owen 2025 (in prep) See also Rogers 2025

Atmospheric escape of Steam

- Envelopes can be stripped by atmospheric escape
- Interior composition changes over time

Emerson Tao (undergraduate)

Tao, Aguichine+2025
"Planets on the Edge" conference
Santa Barbara, CA, USA
May 6-9, 2025

Rocky planets' age matters too

- Rocky planets could be molten inside: change in radius
- Updated equations of state (EOS) for iron (Hakim+2018) and mantle (Caracas+2024)

Lily Larkins (undergraduate)

Rocky planets' age matters too

• See our poster ©

Summary

- Evolution (stellar age) can distinguish between <u>steam worlds</u> and <u>gas dwarfs</u>
 - ➤ Time is key!

Modeling is exciting (but hard):

- ➤ Need more experiments (opacity, EOS)
- ➤ Other phenomenons (mixing, chemistry, etc.) (Kite+2020, Dorn+2021, Vazan+2022)
- \triangleright Next step: $H_2O + H_2$ -He

MARDIGRAS (visualisation tool):

- ➤ For observers: interpret exoplanet composition, use grids with MCMC
- > For experts: compare models
- > For educators: teaching tool

MARDIGRAS, Aguichine+2024

