



# The Stellar Analysis System: weighting, sizing and dating the stars

R-M. Ouazzani, K. Belkacem, C. Renié, O. Roth, J. Philidet and the WP12



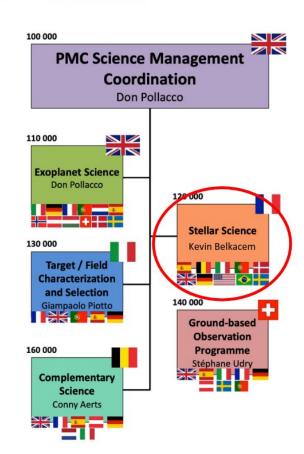








### PLATO mission consortium: core stellar science


# Stellar Science work package (WP12) 255 members

### Before operations

- Specifies the Stellar Analyses System pipeline (SAS)
   (architecture and algorithms)
- Provides external tools (stellar model+frequencies grids, spectroscopic parameter tables, ... )
- Validates the pipeline and evaluates its performances

#### **During operations**

- Updates the algorithms specifications and tools
- Validation of mission data-products DP3 to DP5



### The PLATO stellar programs

#### The PLATO Core Program

Designed to fulfill the science objectives of the mission

- FGK dwarfs and subgiants (F5 to K7)
- Cool dwarfs (M)

### The Science Calibration and Validation stars (scv)

Designed to test, improve and validate stellar models

- Red giant stars
- γ Doradus stars
- Eclipsing binaries
- Photometrically stable stars
- → regimes out of reach by the core program
- → Parameters derived using model-independent methods

#### Complementary Science Program

Designed to serve the wider community with photometric obs<sup>o</sup>

- Binary and multiple stars
- Pulsating stars (earlier than F5)
- Magnetic stars and rotational variables
- Stars with mass loss
- young stellar objects and stars with debris disks
- Galactic structure
- Transient phenomena and extragalactic science

### The core program stellar samples

|                      |                              | P <sub>1</sub>                  | P <sub>2</sub>                   | P <sub>4</sub>                 | <b>P</b> <sub>5</sub>           | Colour<br>sample                  |
|----------------------|------------------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------|-----------------------------------|
| Stars                |                              | ≥ 15,000<br>(goal 20000)        | ≥ 1,000                          | ≥ 5,000                        | ≥ 245,000                       | 300                               |
| Spectral type        |                              | Dwarf and<br>subgiants<br>F5-K7 | Dwarf and<br>subgiants<br>F5-K7  | Cool late<br>type<br>dwarfs    | Dwarf and<br>subgiants<br>F5-K  | Anywhere in<br>the HR<br>diagram  |
| Limit m <sub>V</sub> | Limit m <sub>V</sub>         |                                 | 8.5                              | 16                             | 13                              | -                                 |
| Random noise         | Random noise (ppm in 1 hour) |                                 | ≤ 50                             | -                              | -                               | -                                 |
| Observation p        | hase                         | LOP                             | LOP                              | LOP                            | LOP                             | LOP                               |
|                      | Imagettes                    | 25 s                            | 25 s<br>2.5 s for a<br>subsample | 25 s for<br>> 5,000<br>targets | 25 s for<br>> 9,000<br>targets  | 2.5 s                             |
| Observation          | Light-curves                 | -                               | -                                | -                              | ≤ 600 s                         | -                                 |
| sampling<br>times    | Centroid measurements        | -                               | -                                | -                              | ≤ 50 s for 5%<br>of targets     | -                                 |
|                      | Transit<br>oversamp<br>ling  | -                               | -                                | -                              | ≤ 50 s for<br>10% of<br>targets | -                                 |
| Wavelength           |                              | 500-1000<br>nm                  | 500-1000<br>nm                   | 500-1000<br>nm                 | 500-1000<br>nm                  | Red and blue<br>spectral<br>bands |

### P1 sample

FGK dwarfs and subgiants Vmag<11

### P2 sample

FGK dwarfs and subgiants Vmag<8.5

#### P4 sample

M dwarfs Vmag<16

#### P5 sample

FGK dwarfs and subgiants Vmag < 13

From ESA-PLATO-ESTEC-SCI-RS-001

# The PLATO data products

| Validated imagettes, light curves and centroid curves                                                                        | DP0    | L0 | raw data                    |
|------------------------------------------------------------------------------------------------------------------------------|--------|----|-----------------------------|
| Calibrated imagettes, light curves and centroid curves                                                                       | DP1    | L1 | corrected & calibrated data |
| Planetary candidate transits and their parameters                                                                            | DP2    | L2 |                             |
| Asteroseismic mode parameters                                                                                                | DP3    | L2 |                             |
| Stellar rotation and activity                                                                                                | DP4    | L2 | science products            |
| Stellar radii, masses, and ages                                                                                              | DP5    | L2 | '                           |
| Living catalogue of confirmed planetary systems and their<br>characteristics using light curves and transit time variations  | DP6    | L2 |                             |
| Follow-up ground-based observations                                                                                          |        | Lg | follow-up data              |
| Living catalogue of confirmed planetary systems and their characteristics using new ground-based follow-up observations (Lg) | DP6+Lg | L3 | final catalog               |

### The PLATO data products

| Validated imagettes, light curves and centroid curves                                                                        | DP0    | L0 |
|------------------------------------------------------------------------------------------------------------------------------|--------|----|
| Calibrated imagettes, light curves and centroid curves                                                                       | DP1    | L1 |
| Planetary candidate transits and their parameters                                                                            | DP2    | L2 |
| Asteroseismic mode parameters                                                                                                | DP3    | L2 |
| Stellar rotation and activity                                                                                                | DP4    | L2 |
| Stellar radii, masses, and ages                                                                                              | DP5    | L2 |
| Living catalogue of confirmed planetary systems and their characteristics using light curves and transit time variations     | DP6    | L2 |
| Follow-up ground-based observations                                                                                          |        | Lg |
| Living catalogue of confirmed planetary systems and their characteristics using new ground-based follow-up observations (Lg) | DP6+Lg | L3 |

raw data

corrected & calibrated data

stellar science products

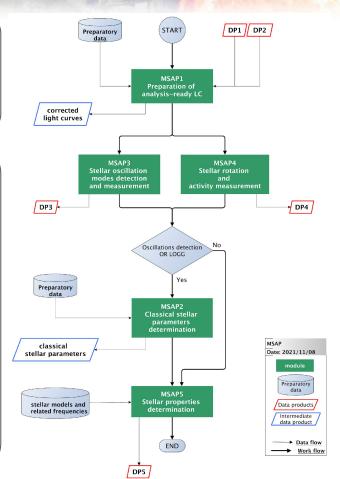
follow-up data final catalog

### **The PLATO data products**

| - |                                                                                                                                 | 12.12  | 100 |                             |
|---|---------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----------------------------|
|   | Validated imagettes, light curves and centroid curves                                                                           | DP0    | L0  | raw data                    |
|   | Calibrated imagettes, light curves and centroid curves                                                                          | DP1    | L1  |                             |
| Г | Planetary candidate transits and their parameters                                                                               | DP2    | L2  | corrected & calibrated data |
|   | Asteroseismic mode parameters                                                                                                   | DP3    | L2  |                             |
| Г | Stellar rotation and activity                                                                                                   | DP4    | L2  | stellar science products    |
| L | Stellar radii, masses, and ages                                                                                                 | DP5    | L2  |                             |
| T | Living catalogue of confirmed planetary systems and their<br>characteristics using light curves and transit time variations     | DP6    | L2  |                             |
|   | Follow-up ground-based observations                                                                                             |        | Lg  | follow-up data              |
|   | Living catalogue of confirmed planetary systems and their<br>characteristics using new ground-based follow-up observations (Lg) | DP6+Lg | L3  | final catalog               |

### **+** Additional data products:

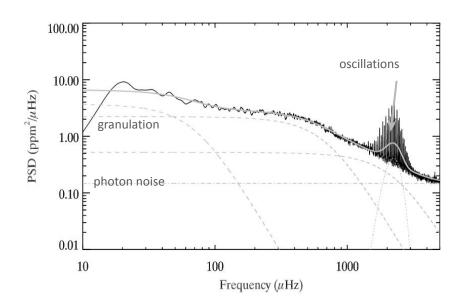
- Analyses-ready cleaned light curves
- Additional seismic parameters: splittings, heights, inclination angles, mean density
- Additional stellar parameters: effective temperature, metallicity, abundances, ...


### The Stellar Analysis System pipeline (SAS)

#### **Function of the Pipeline**

- ✓ processes DP1 light curves from P1, P2, P4, and P5 samples
- ✓ produces DP3 (oscillations), DP4 (rotation + activity), and DP5 (mass, radius, age) for all the targets

#### **Science Modules**


- MSAP1 « Preparation of analysis-ready light-curves »
  - Lead: A. Moya & N. Lanza
- MSAP2 « Classical stellar parameters determination »
  - Lead: T. Morel
- MSAP3 « Stellar oscillation modes detection and measurement »
   Lead: W.J. Chaplin
- MSAP4 « Stellar rotation and activity measurement »
  - Lead: N. Lanza
- MSAP5 « Stellar properties determination »
  - Lead: M. Cunha, A. Miglio
- Grids of stellar models and frequencies Lead: A. Palacios



### **Expected yield: Asteroseismology**

#### From Goupil et al. (2024), based on PIC 1.1.0

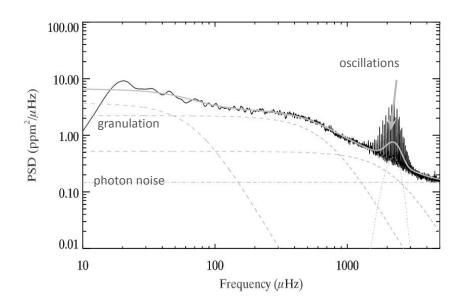
- Estimated number of PLATO seismic targets
- P1, P2 and P5 samples
- Expected performances in terms of mass, radius and age



#### Mode detection probability

$$P_{\text{det}} = \int_{u_0}^{\infty} \frac{1}{\Gamma(N_{\text{b}})} u'^{N_{\text{b}}-1} e^{-u'} du'$$
$$u_0 = \frac{1 + (S/N)_{\text{thres}}}{1 + (S/N)_{\text{mod}}}$$

*N<sub>b</sub>* Number of independent frequency bins in oscillation envelope band


 $(S/N)_{thresh}$  Signal-to-noise ratio for which the false alarm probability is 0.1%

 $(S/N)_{mode}$  Signal-to-noise ratio of the oscillations (total oscillation power/total noise power in the same frequency range)

### **Expected yield: Asteroseismology**

#### From Goupil et al. (2024), based on PIC 1.1.0

- Estimated number of PLATO seismic targets
- P1, P2 and P5 samples
- Expected performances in terms of mass, radius and age



#### Mode detection probability

$$P_{\text{det}} = \int_{u_0}^{\infty} \frac{1}{\Gamma(N_b)} u^{N_b-1} e^{-u'} du'$$

$$u_0 = \frac{1 + (S/N)_{\text{thres}}}{1 + (S/N)_{\text{mod}}}$$

N<sub>b</sub> Number of independent frequency bins in oscillation envelope band

 $(S/N)_{thresh}$  Signal-to-noise ratio for which the false alarm probability is 1%

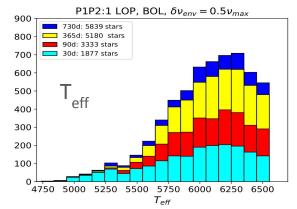
(S/N)<sub>mode</sub> Signal-to-noise ratio of the oscillations (total oscillation power/total noise power in the same frequency range)

### **Expected yield: Asteroseismology P1-P2 samples**

|                             | Goupil et al. (2024)<br>based on PIC 1.1.0 |                     | PLATO-LIRA-PSM-TN-0098<br>based on PIC 2.1.0.1 |
|-----------------------------|--------------------------------------------|---------------------|------------------------------------------------|
| Cases                       | Beginning Of Life PIC 1 🔻                  | End Of Life PIC 1 🗸 | Beginning Of Life PIC 2 🗸                      |
| All stars                   | 5858 (84 %)                                | 5553 (79 %)         | 8291 (71%)                                     |
| Main-sequence only          | 2751                                       | 2449                | 3549                                           |
| M < 1.6 Msun                | 4744                                       | 4439                |                                                |
| M < 1.6 Msun, MS stars only | 2732                                       | 2430                |                                                |
| M < 1.2 Msun                | 1245                                       | 1106                |                                                |
| M < 1.2 Msun, MS stars only | 1016                                       | 830                 |                                                |
| R < 1.1 Rsun                | 269                                        | 203                 |                                                |

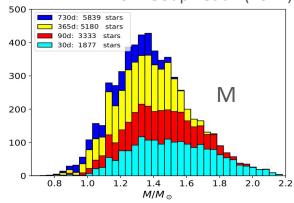
# Expected yield after 2 years for P1 and P2 samples

- Oscillations detected in 71% of P1/P2: 8291 stars
- Oscillations detected in 60-70% of P1-P2 with M < 1.2 M<sub>sun</sub>


### **Expected yield: Asteroseismology P1-P2 samples**

|                             | Goupil et al. (2024)<br>based on PIC 1.1.0 |                     |  |
|-----------------------------|--------------------------------------------|---------------------|--|
| Cases                       | Beginning Of Life PIC 1 v                  | End Of Life PIC 1 🗸 |  |
| All stars                   | 5858 (84 %)                                | 5553 (79 %)         |  |
| Main-sequence only          | 2751                                       | 2449                |  |
| M < 1.6 Msun                | 4744                                       | 4439                |  |
| M < 1.6 Msun, MS stars only | 2732                                       | 2430                |  |
| M < 1.2 Msun                | 1245                                       | 1106                |  |
| M < 1.2 Msun, MS stars only | 1016                                       | 830                 |  |
| R < 1.1 Rsun                | 269                                        | 203                 |  |

| PLATO-LIRA-PSM-TN-0098<br>based on PIC 2.1.0.1 |   |  |
|------------------------------------------------|---|--|
| Beginning Of Life PIC 2                        | ~ |  |
| 8291 (71%)                                     |   |  |
| 3549                                           |   |  |
|                                                |   |  |
|                                                |   |  |
|                                                |   |  |
|                                                |   |  |
|                                                |   |  |


# Expected yield after 2 years for P1 and P2 samples

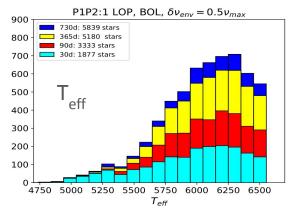
- Oscillations detected in 71% of P1/P2: 8291 stars
- Oscillations detected in 60-70% of P1-P2 with M < 1.2 M<sub>sun</sub>

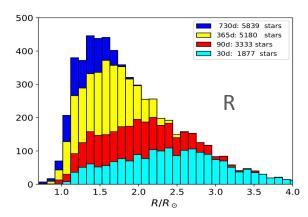




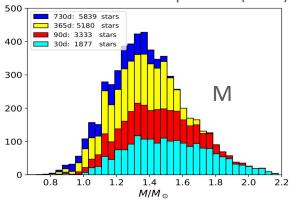
#### From Goupil et al. (2024)




### **Expected yield: Asteroseismology P1-P2 samples**


|                             | Goupil et al. (2024)<br>based on PIC 1.1.0 |                     |  |
|-----------------------------|--------------------------------------------|---------------------|--|
| Cases ~                     | Beginning Of Life PIC 1 🔍                  | End Of Life PIC 1 🗸 |  |
| All stars                   | 5858 (84 %)                                | 5553 (79 %)         |  |
| Main-sequence only          | 2751                                       | 2449                |  |
| M < 1.6 Msun                | 4744                                       | 4439                |  |
| M < 1.6 Msun, MS stars only | 2732                                       | 2430                |  |
| M < 1.2 Msun                | 1245                                       | 1106                |  |
| M < 1.2 Msun, MS stars only | 1016                                       | 830                 |  |
| R < 1.1 Rsun                | 269                                        | 203                 |  |


| PLATO-LIRA-PSM-TN-0098<br>based on PIC 2.1.0.1 |  |  |
|------------------------------------------------|--|--|
| Beginning Of Life PIC 2 🗸                      |  |  |
| 8291 (71%)                                     |  |  |
| 3549                                           |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |


# Expected yield after 4 years for P1 and P2 samples

- Oscillations detected in 79% of P1/P2: 8685 stars (4220 MS)
- Individual frequencies of oscillations in 8670 stars (4205 MS)





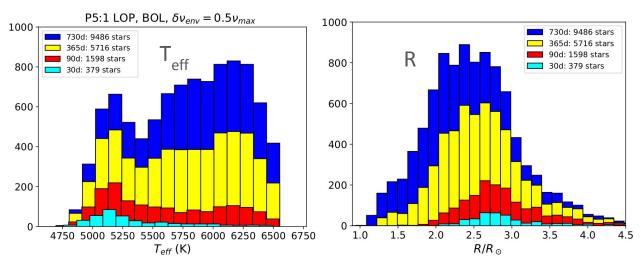


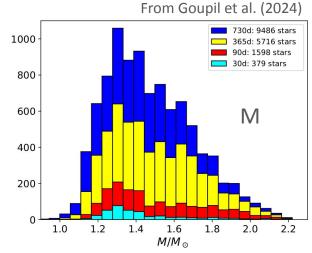


### **Expected yield: Asteroseismology P5 sample**

| Cases                       | 3 months 🗸 | 1 year 🗸   | 2 years PIC 1 v |
|-----------------------------|------------|------------|-----------------|
| All stars                   | 1599 (1 %) | 5718 (4 %) | 9491 (7%)       |
| Main-sequence only          | 0          | 61         | 584             |
| Subgiants                   | 1599       | 5657       | 8877            |
| M < 1.2 Msun                | 81         | 392        | 878             |
| M < 1.2 Msun, MS stars only | 1016       | 43         | 250             |

# Expected yield after 2 years for P5 sample


- Oscillations detected in 7% of P5: 9491 mostly subgiant stars
- Detection rate of MS stars positive after a year


### **Expected yield: Asteroseismology P5 sample**

| Cases ~                     | 3 months 🗸 | 1 year 🗸   | 2 years PIC 1 🗸 |
|-----------------------------|------------|------------|-----------------|
| All stars                   | 1599 (1 %) | 5718 (4 %) | 9491 (7%)       |
| Main-sequence only          | 0          | 61         | 584             |
| Subgiants                   | 1599       | 5657       | 8877            |
| M < 1.2 Msun                | 81         | 392        | 878             |
| M < 1.2 Msun, MS stars only | 1016       | 43         | 250             |

# Expected yield after 2 years for P5 sample

- Oscillations detected in 7% of P5: 9491 mostly subgiant stars
- Detection rate of MS stars positive after a year



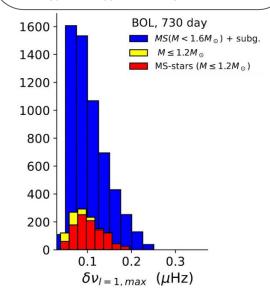


### **Expected yield: MRA inference (P1-P2 samples)**

#### **PLATO Science Requirements**

Mass better than 15%, Radius better than 2%, Age as low as 10%

reference star  $1M_{sun}$ ,  $1R_{sun}$  and  $T_{eff}$  = 6000K.


### **Expected yield: MRA inference (P1-P2 samples)**

#### **PLATO Science Requirements**

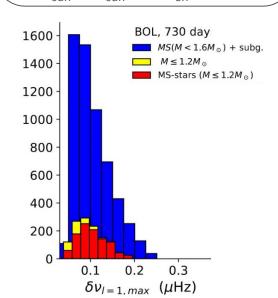
Mass better than 15%, Radius better than 2%, Age as low as 10%

reference star

 $1M_{sun}$ ,  $1R_{sun}$  and  $T_{eff}$  = 6000K.



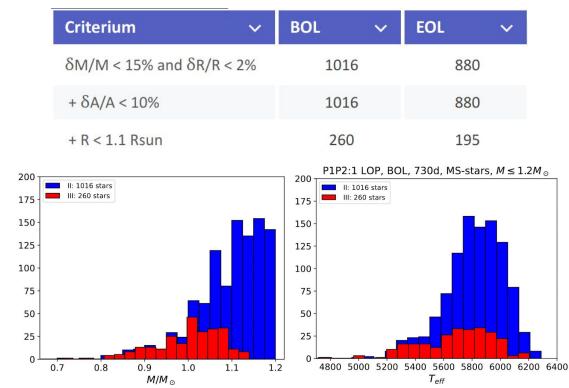
seismic inferences based on measurements of individual modes.


 $\rightarrow$   $\delta$ M/M,  $\delta$ R/R and  $\delta$ A/A are directly related to  $\delta v$ 

### **Expected yield: MRA inference (P1-P2 samples)**

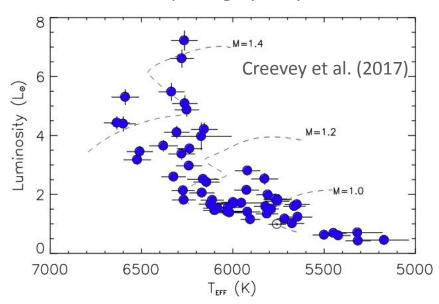
#### **PLATO Science Requirements**

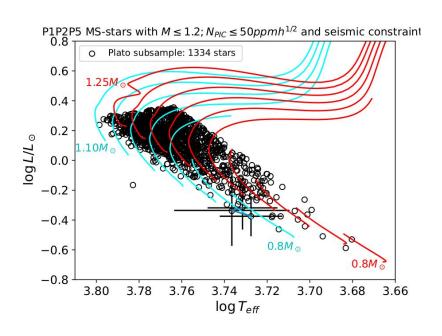
Mass better than 15%, Radius better than 2%, Age as low as 10% reference star


 $1M_{sun}$ ,  $1R_{sun}$  and  $T_{eff}$  = 6000K.



seismic inferences based on measurements of individual modes.


 $\rightarrow$   $\delta$ M/M,  $\delta$ R/R and  $\delta$ A/A are directly related to  $\delta v$ 


#### 2-year baseline, P1-P2, MS, M< 1.2 Msun



### **Comparison with Kepler yield**

% 67 stars in the Kepler legacy sample







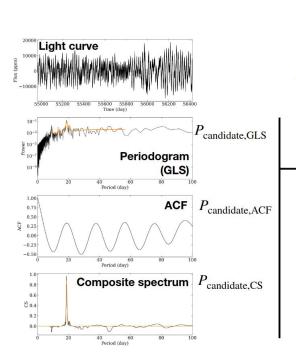


# Thank you?












#### **MSAP4** output

- Rotation period
- Long term modulation (Sph index, cycle period)
- Granulation
- model-independent log g

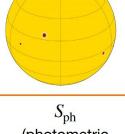
For rotation and cycle periods → ROOSTER



#### **ROOSTER**

Random fOrest Over STEllar Rotation

(Breton et al. 2021)



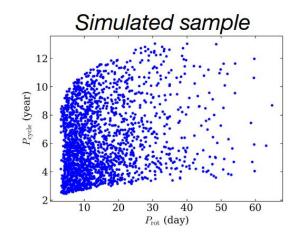

The code is open-source and fully modular:

Source code: gitlab.com/sybreton/ star\_privateer

> Documentation: starprivateer.readthedocs.io

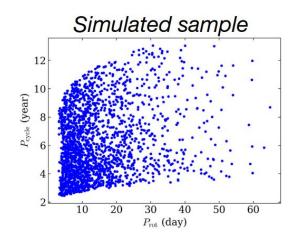
star-privateer

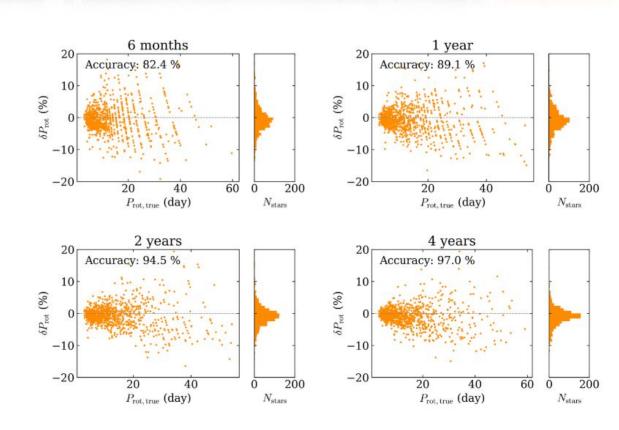



(photometric magnetic activity proxy)

Rossby number **Ro** and differential rotation

(Mathur et al. 2014, Noraz et al. 2022)


#### From Breton et al. (2024)

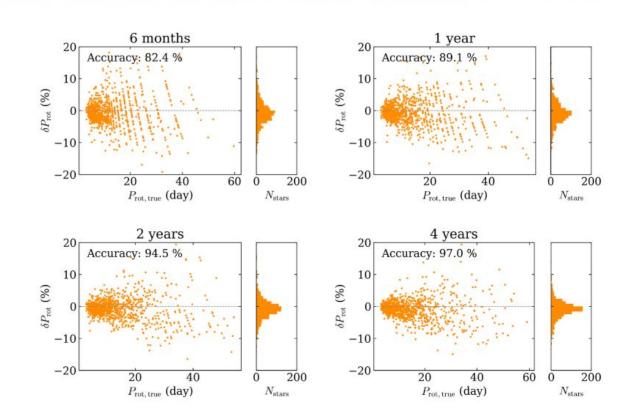

- Simulated light curves for P1-P2 samples (based on PIC 1)
- Estimated recovery rate for rotation and cycle periods



#### From Breton et al. (2024)

- Simulated light curves for P1-P2 samples (based on PIC 1)
- Estimated recovery rate for rotation and cycle periods






#### From Breton et al. (2024)

- Simulated light curves for P1-P2 samples (based on PIC 1)
- Estimated recovery rate for rotation and cycle periods

#### **Rotation recovery**

- Criterium:  $\delta P_{rot}/P_{rot} < 10\%$
- Very good recovery rate after 1 or 2 years
- Smaller spread for shorter periods and longer baseline







# Thank you!

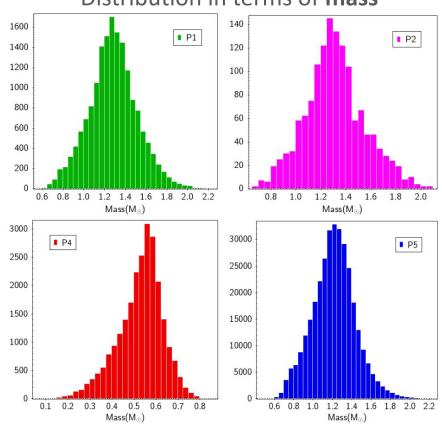











### **PLATO % TESS**

Comparison of PLATO and TESS's design

| 200                     | THE PROPERTY OF THE PARTY OF TH |                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                         | PLATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TESS                                 |
| Telescope aperture      | 12cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10cm                                 |
| Telescope field of view | 1037 deg <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 576 deg <sup>2</sup>                 |
| Number of telescopes    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                    |
| Telescope arrangement   | Four groups of six.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adjacent pointing to give strip-like |
|                         | Each group points together.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | field-of-view                        |
|                         | Groups have overlapping fields-of-view.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| Total field of view     | 2232 deg <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2304 deg <sup>2</sup>                |
| (per pointing)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                  |
| Time per pointing       | 2+ years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 days                              |
| Number of pointings     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Pixel size              | 15 arcseconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21 arcseconds                        |
| Wavelength range        | 500-1000nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600-1000nm                           |
| Cadence                 | 25s (for main sample, M-dwarfs, brightest stars)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120s (for brightest 200,000 stars)   |
|                         | 600s (for statistical sample of ≥245,000 stars)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800s (full frame images)            |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Main targets            | Bright, Sun-like stars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bright, M-dwarf stars                |
| Main objective          | Earth-sized planets in the habitable zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rocky planets                        |
| Number of stars         | ≥265,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≥500,000                             |
| Noise                   | ≤ 50 ppm in 1hr (for main sample)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≤200ppm in 1hr                       |
|                         | ≤800ppm in 1hr (for M-dwarfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Predicted yield         | >4,000 planets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~1,700 planets                       |
|                         | 2-120 small planets in habitable zone of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 640-1340 planets around M-dwarfs     |
|                         | solar-like stars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-4 small planets in the habitable   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zones around M-dwarfs                |
| Nominal mission         | 4 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 years                              |
| duration                | • 5000 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
| Location                | L2 (1.5 million km from Earth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Orbiting between Earth and the       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moon's orbit (384,000km from the     |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Earth)                               |

### **The PLATO Input Catalog 2.0**

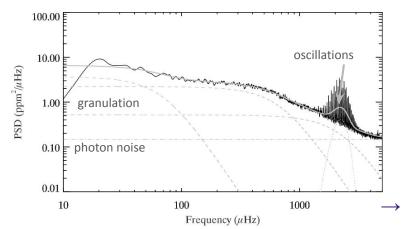
#### Distribution in terms of mass



| Sample | PIC2.0.0.1-t | Required |  |
|--------|--------------|----------|--|
| P1     | 16900        | 15000    |  |
| P2     | 1398         | 1000     |  |
| P4     | 24707        | 5000     |  |
| P5     | 313554       | 245000   |  |

### Predicted seismic yield with PLATO (update with PIC 2.1.0.1)

From Goupil et al. in rev.


The probability that the power spectrum holds oscillations to a detectable level is given by:

$$P_{\text{final}} = \int_{y}^{\infty} \frac{\exp{(-y')}}{\Gamma(N)} y'^{(N-1)} dy', \text{ avec} \qquad y = (1 + S/N_{\text{thresh}})/(1 + S/N_{\text{tot}}).$$

 $S/N_{thresh} \rightarrow$  the S/N threshold above which the probability that the signal is due to noise is lower than 1%.

 $\mathrm{S/N_{tot}} = P_{\mathrm{tot}}/B_{\mathrm{tot}} 
ightarrow \mathrm{le}$  global S/N due to the total power in oscillations,

 $P_{tot}$ : total power in oscillations  $B_{tot}$ : background in the oscillations frequency interval

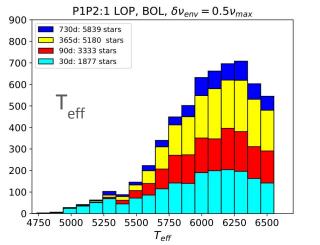


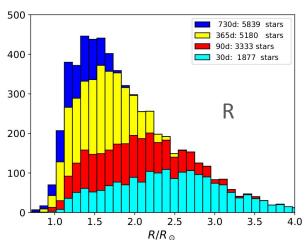
$$B_{tot} = B_{inst} + \longrightarrow \text{ scaling law: power of } v_{max}$$
 $B_{gran} \longrightarrow \text{ with PINE for PIC targets}$ 
 $P_{tot} \simeq \frac{1}{2} \frac{V_{mod}^2 A_{max}^2}{\Delta v} \longrightarrow \text{ scaling laws based on stellar parameters}$ 

→ Detection probability for samples P<sub>1</sub>, P<sub>2</sub> and P<sub>5</sub> targets of the PIC

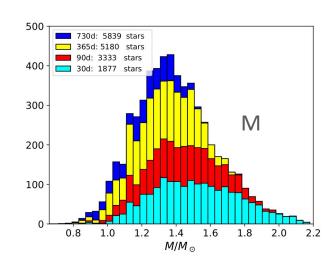
### Predicted seismic yield with PLATO (based on PIC 1.1.0)

PLATO-LIRA-PSM-TN-0098


for one LOP:


7 009 stars the P-P samples Samples P-P samples 130 140 stars in the P5 sample for 2 instrumental conditions:

Beginning Of Life //


End Of Life (22 cameras only allowing for degradation of the instrument)

From Goupil et al. in rev.





| cases                  | BOL  | EOL  |
|------------------------|------|------|
| all                    | 5858 | 5553 |
| MS-stars               | 2751 | 2449 |
| M < 1.6                | 4744 | 4439 |
| M < 1.6, MS-stars      | 2732 | 2430 |
| $M \leq 1.2$           | 1245 | 1106 |
| $M \le 1.2$ , MS-stars | 1016 | 830  |
| $R \leq 1.1$           | 269  | 203  |

