

Young planetary systems: a pathway from **TESS to PLATO**

Nardiello Domenico

Università degli Studi di Padova

HD 108236: 5 planets but ...

Young or old?

How did this planetary system form?

How can we reconstruct the formation and evolutionary history of a planetary system?

- ★ Looking for exoplanets orbiting stars with well constrained ages (e.g. stellar clusters, associations and moving groups)
 - Many accurate methods to measure the age with extreme precision (isochrones, girochronology, asteroseismology)
 - Accurate stellar parameters → Accurate planet parameters
 - Temporal evolution of exoplanets, from the earliest stages of their formation until they become elderly
- ★ Studying young (<1 Gyr) exoplanets:
 - O Planet formation (properties of the disc, stellar multiplicity, etc.)
 - Orbital evolution (Disc vs high-eccentricity migration, tidal circularization, etc)
 - Radius evolution (Photoevaporation, Core-powered mass loss, contraction, etc.)

Age of the stars

- ★ Looking for exoplanets orbiting stars with well constrained ages (e.g. stellar clusters, associations and moving groups)
 - Many accurate methods to measure the age with extreme precision (isochrones, girochronology, asteroseismology)
 - Accurate stellar parameters → Accurate planet parameters
 - Temporal evolution of exoplanets, from the earliest stages of their formation until they become elderly

★ The search for extrasolar planets orbiting young stars is complicated by the presence of the strong stellar activity

... anyway stellar activity tells us a lot about the star \rightarrow Prot \rightarrow Age

Please, preserve the stellar activity!

- ★ The search for extrasolar planets orbiting young stars is complicated by the presence of the strong stellar activity
- ★ Active regions (e.g. starspots) affect the light curve: robust detrending methods are mandatory to detect transits

★ The search for extrasolar planets orbiting young stars is complicated by the presence of the strong stellar activity

 Active regions (e.g. starspots) affect the light curve: robust detrending methods are mandatory to detect transits

 ★ Difficulties in detecting long period (i.e. few transits) and/or small (i.e shallow transits) exoplanets

50 Myr!

Nardiello et al. (2021)

First two years of TESS mission.. Injection / recovery test. Open cluster members (<1Gyr)

Nardiello et al. (2021)

Young stars & stellar activity: radial velocities

- ★ Moderate-to-high rotation rates worsening the spectral information of the data and a degradation of the RV precision
- ★ Starspots are able to distort the spectral line profiles and injecting fake signals in the RV series
- ★ Difficulties in distinguishing planetary signal from stellar activity in RVs: complementary information from photometry and activity indices to constraint activity

PLATO Stellar Variability Working Group

TOI-1807b: the youngest USP with an accurate mass measurement

TOI-1807: K-dwarf in comoving group

Age: 300 +/- 80 Myr → very active star

Fit stellar activity + planet through Multidimensional GP implemented in **PyORBIT** (Malavolta+2016,2018)

 $P_{h} = 0.5494 \text{ days}$

Nardiello et al (2022)

TOI-1430 b: A young planet with evaporating He atmosphere

Young K-dwarf

Age: 700 +/- 150 Myr \rightarrow **very** active star P_{rot} = 12.0 days

Nardiello et al. (2025)

Domenico Nardiello – UNIPD

(

TOI-1430 b: A young planet with evaporating He atmosphere

Nardiello et al. (2025)

ESP2025 – Marseille, June 23-25, 2025 Domenico Nardiello – UNIPD

- ★ No clear evidence of MR evolution
- ★ Low density young exoplanets (?)
- ★ Lack of constraints on the mass of young (<50 Myr) planets

- ★ <100 Myr old planets populate the low density region of the P_{orb} – R_P diagram
- ★ Selection effect or radius evolution with time?
- ★ No information on young planets with P_{orb}>100-200 d!

- ★ Is there a radius evolution with time? Are the planets on the left the progenitors of the planets on the right?
- ★ Lack of young small planets: observational bias?

★ Lack of young small planets: observational bias?

★ Lack of constraints on the mass of young (<50 Myr) planets

★ No information on young planets with P_{orb}>100-200 d!

evolution with time?

- ★ No clear evidence of MR evolution
- ★ Low density young exoplanets (?)
- ★ Lack of constraints on the mass of young (<50 Myr) planets

- ★ <100 Myr old planets populate the low density region of the P_{orb} – R_P diagram
- ★ Selection effect or radius evolution with time?
- ★ No information on young planets with P_{orb}>100-200 d!

- ★ Is there a radius evolution with time? Are the planets on the left the progenitors of the planets on the right?
- Lack of young small planets: observational bias?

PLATO Astrometry WG

Main goal: Combine Gaia and PLATO data to find and characterize the Solar System 2.0, i.e. Earth-like inner transiting planet in the HZ + at least 1 giant astrometric planet in the external planetary system

... but also:

- False positives analysis
- not only Exoplanets! → Astrometric/photometric analysis of binary systems (including brown dwarfs!)
- Development and testing of software for detection and characterization of astrometric signals/planets
- Characterization of Solar-like systems

Membership is open!! If you want to be part of this WG, compile:

or send me an email: domenico.nardiello@unipd.it

First Kick-off meeting on June 17...next one in September ...

